首页 >  2013, Vol. 17, Issue (5) : 1246-1263

摘要

全文摘要次数: 4653 全文下载次数: 142
引用本文:

DOI:

DOI:10.11834/jrs.20132308

收稿日期:

2012-11-07

修改日期:

2013-04-22

PDF Free   HTML   EndNote   BibTeX
利用遥感指数时间序列轨迹监测森林扰动
1.南京信息工程大学 遥感学院, 江苏 南京 210044;2.中国科学院 地理科学与资源研究所, 北京 100101;3.南京大学 国际地球系统科学研究所, 江苏 南京 201193
摘要:

作为陆地生态系统的主体,森林的碳循环与碳蓄积对研究陆地生态系统起着重要作用,但目前森林扰动资料的缺乏在很大程度上影响着森林碳通量的估算精度。利用1986年-2011年共14期的Landsat TM/ ETM+影像,以江西武宁县为例,使用遥感指数时间序列轨迹分析方法,研究了适用于中国南方森林的扰动监测技术,该技术不仅可以识别森林的扰动变化,同时还可以监测植被的恢复信息。精度分析表明该方法得出的扰动产品的Kappa系数达到0.80,总体精度达到89.7%,表明该方法对武宁县森林扰动具有较好的监测能力。森林扰动特征分析表明武宁县森林在20世纪90年代受扰动最为剧烈,并且扰动主要发生在低海拔地区。

Forest disturbance monitoring based on the time-series trajectory of remote sensing index
Abstract:

Forest ecosystems, which are major parts of the terrestrial biosphere, play an important role in terrestrial carbon cycling and storage. However, the accuracy of forest carbon-flux estimation is greatly influenced by the lack of forest disturbance data. Thus, we conduct a study in Wuning County in Southern China by adopting a time-series trajectory analysis technique to detect forest disturbances in 14 Landsat Thematic Mapper/Enhanced Thematic Mapper Plus images from 1986 to 2011. This technique not only identifies forest disturbance, but also provides vegetation recovery information. By analyzing the time-space disturbance characteristics of forest disturbance, we found that Wuning County has suffered from a significantly dramatic disturbance in the 1990s, most of which has occurred in low-elevation areas because of human activities. Compared with field observations, the Kappa coefficient of our disturbance products reaches 0.80 with an overall accuracy of 89.7%, thus indicating the significant potential of the technique for forest disturbance monitoring.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群