首页 >  2012, Vol. 16, Issue (6) : 1157-1172

摘要

全文摘要次数: 3802 全文下载次数: 22
引用本文:

DOI:

10.11834/jrs.20121319

收稿日期:

2011-11-07

修改日期:

2012-03-28

PDF Free   HTML   EndNote   BibTeX
采用非正定OCSVM 的高光谱影像地物检测
1.信息工程大学测绘学院,郑州 450052;2.遥感科学国家重点实验室中科院遥感应用研究所,北京 100101
摘要:

高斯径向基核函数是基于光谱向量间欧氏距离的度量,对于因光照强度变化而引起的地物光谱变异敏感,当同类地物光谱发生变异时,基于高斯径向基核的高光谱影像地物检测算法的性能下降.为了解决该问题,基于光谱曲线形状相似性描述提出了光谱角度余弦核测度这一非正定核函数,并应用于一种非正定OCSVM 方法的高光谱影像地物检测.最后利用两幅高光谱影像进行了实验分析,实验结果证明了本文算法的有效性.

Indef inite OCSVM method for object detection in hyperspectral imagery
Abstract:

As the Gaussian radial basis function (RBF) is based on the Euclidean distance of two spectral vectors, it is sensitive to spectral curve variations resulted from radiation intensity variation. When the spectral curves of same materials are different, the detection performance of the RBF based OCSVM objective detector will degradate. In order to solve this problem, a nonpositive def inite kernel, named as the spectral Angel Cosine Kernel Measure (SACKM), is proposed based on the spectral curves similarity description, and was applied to object detection based on an indef inite OCSVM method in hyperspectral imagery. Finally, the experiments were carried out with two hyperspectral images, which are used to validate the proposed method.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群