首页 >  2012, Vol. 16, Issue (2) : 378-389

摘要

全文摘要次数: 4144 全文下载次数: 80
引用本文:

DOI:

10.11834/jrs.20121004

收稿日期:

2011-01-20

修改日期:

2011-05-20

PDF Free   HTML   EndNote   BibTeX
孤东油田土壤石油类含量的高光谱反演模型
中国石油大学(华东)地球科学与技术学院, 山东 青岛 266555
摘要:

土壤中石油类含量的检测对石油污染的预防与治理具有重要的实际意义。本文首先进行孤东油田土壤样品高光谱反射率的室内测定及石油含量的检测,然后利用单变量预测模型和逐步回归方法分析了土壤光谱特征参数与石油类含量之间的线性和非线性关系,结果表明:包络线分析的第三折线段斜率与石油类含量相关性最好,该段斜率的三次曲线函数为石油类含量的最佳单变量估算模型。标准正态变量变换对光谱的预处理效果最好,利用变换后光谱建立多元模型,其调整的判定系数R2是0.826,总均方根RMSE是0.531,且自变量个数较少,为最优预测模型。本文提出的利用高光谱数据检测土壤中石油类含量的方法,为土壤石油类污染检测提供了一种有效的新思路。

Soil oil content hyperspectral model in Gudong Oilfield
Abstract:

The detection of oil content in soil has an important practical significance in oil pollution prevention and control. Wemeasure the hyperspectral reflectivity and the oil content for soil samples in Gudong Oilfield. Using variable forecast model andstepwise regression method, we analyze the linear and nonlinear relationships between soil spectral characteristic parameters andoil content. The experiment shows that there is a significant correlation between the third broken line segment slope of envelopeline analysis and the oil content. The cubic function of this section slope is the best single variate estimation model. The standardnormal variate transformation has the best effect on spectrum pretreatment. When the transformed spectral are used to build multivariateregression model, the adjusted coefficient of determination R2 is 0.826, and the total RMSE is 0.531, which is the bestforecast model. The method of using hyperspectral data to detect the oil content will provide an effective new way for detectingthe oil pollution in soil.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群