首页 >  2011, Vol. 15, Issue (1) : 73-87

摘要

全文摘要次数: 7695 全文下载次数: 113
引用本文:

DOI:

10.11834/jrs.20110106

收稿日期:

2010-01-18

修改日期:

2010-04-02

PDF Free   HTML   EndNote   BibTeX
基于傅里叶描述子的高分辨率遥感图像 地物形状特征表达
1.南京大学 地理信息科学系, 江苏 南京 210093;2.南京大学 国际地球系统科学研究所, 江苏 南京 210093
摘要:

本文在对傅里叶描述子进行归一化的基础上, 将该方法引入地物轮廓的形状特征描述中, 针对建筑物、 农田、道路和河道4 种典型地物, 分别从谱线特征、不同频段描述子对形状特征的贡献率、形状重构三个方面进行 分析, 结果表明, 在谱线图中, 直流分量对形状特征的贡献率在70%以上, 低频和高频成分共占7%—24%左右, 中 频成分的贡献率只有2%—4%左右, 仅低频成分(第1—5 项)便能够很好地进行地物形状重构。最后将第1—5 项描 述子应用到基于决策树的面向对象分类中, 得出实验区总体分类精度为98.48%, Kappa 系数为0.9714。傅里叶描述 子的方法能够很好的表达高分辨率遥感图像的地物形状特征。

Shape feature representation of ground objects from high-resolutionremotely sensed imagery base on Fourier Descriptors
Abstract:

The traditional Fourier Descriptors (FDs) are normalized in this paper to make it independent of translation, rotation and scale changes. Four typical objects i.e. building, paddy, road and river are selected and their boundaries are expressed as sequences of complex numbers. FDs are obtained through one-dimensional Fourier transform. The characteristics of the frequency spectrum, contribution rate and the shape reconstruction are analyzed. The results show that the different frequency ranges have different contribution rates; the Direct Component (DC) reaches a proportion of more than 70%; the Low Frequency (LF) and High Frequency (HF) totally reach 7%—24% while the Medium Frequency (MF) merely 2%—4%. The LF components (descriptors 1—5) make a commendable reconstruction of objects’ shape and these descriptors are applied to the object-oriented classification. The overall classification accuracy is 98.48% with a Kappa coefficient 0.9714.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群