首页 >  2010, Vol. 14, Issue (1) : 23-37

摘要

全文摘要次数: 7218 全文下载次数: 158
引用本文:

DOI:

10.11834/jrs.20100102

收稿日期:

2008-11-06

修改日期:

2009-02-10

PDF Free   HTML   EndNote   BibTeX
运用动态谐波回归模型对MODIS叶面积指数时间序列产品的分析与预测
1.北京师范大学地理学与遥感科学学院, 遥感科学国家重点实验室, 北京 100101;2.北京师范大学, 环境遥感与数字城市北京市重点实验室, 北京 100875
摘要:

运用动态谐波回归模型(Dynamic Harmonic Regression, DHR)对MODIS的长时间序列的LAI产品进行分析, 可以从中分离出LAI随时间变化的多年趋势、季节变化及残差等主要成分, 通过建立的模型实现LAI年间变化的短时预测。本文将所述DHR模型分析方法试用于遥感数据产品随时间变化的信息提取, 对LAI年间变化的预测结果证明该方法用于遥感像元尺度LAI产品的时间序列分析与预测的效果良好。

Analysis and prediction of MODIS LAI time series with Dynamic Harmonic Regression model
Abstract:

Leaf Area Index (LAI) is one of the most important parameters in describing the dynamics of vegetation on land surfaces. LAI products have been produced from data of many remote sensing satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS). In this paper, we used the Dynamic Harmonic Regression (DHR) model to analyze the LAI time series products. The model can decompose the trend, seasonal and residuals components from the original time series, and predict the short-time LAI values. We use the DHR model to extract the time change information from the MODIS LAI time series products. The results show this method to be very effective in predicting the short-term LAI on the pixel basis.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群