首页 >  2008, Vol. 12, Issue (1) : 1-8

摘要

全文摘要次数: 3737 全文下载次数: 147
引用本文:

DOI:

10.11834/jrs.20080101

收稿日期:

修改日期:

2006-08-22

PDF Free   HTML   EndNote   BibTeX
遥感模型多参数反演相互影响机理的研究
1.中国科学院遥感应用研究所遥感科学国家重点实验室,北京 100101;2.北京师范大学遥感科学国家重点实验室,北京 100875
摘要:

遥感数据具有覆盖范围广、时间与空间分辨率高的特点,被广泛应用于提取区域范围内的一些重要的生物物理参数.为提高参数的提取精度,需要制定正确的反演策略.了解影响参数提取精度的因素、反演过程中各反演参数之间如何相互作用是制定合理反演策略的关键.本文通过数学推导与物理机理的分析,证明了影响参数反演精度的因素不但有冠层反射率数据的质量,还有反演过程中参与反演的未知参数的个数、参与反演的每个参数的敏感性及各个参数敏感性之间的相关性.最后通过对反演不同参数个数、不同数据质量进行了叶面积指数反演的精度分析,验证影响参数反演精度的各个因素.

Research on the Mutual Effect of the Parameters on Inversion of Canopy Reflectance Model
Abstract:

Some bio-physical parameters(e.g.leaf area index,LAI) are often inverted using remote sensing data for its large cover scope,high temporal and spatial resolution.The common way of mapping LAI is through the inversion of physically based canopy-reflectance(CR) models using the optimization methods.The information of remote sensing data is usually not enough for the LAI inversion;furthermore,the inversion problem is ill-posed because of many unknown parameters and the relatively insufficient information in remote sensing data.It is necessary to make suitable inversion strategy(such as which parameter(s) should be inverted) for high accuracy of parameters estimation.We should learn the factors which affect the inversion result in order to design the suitable inversion strategy.Different from the research of parameter sensitivity for suitable inversion strategy,we made progress in the inversion process.For the information of the inversion process,some key points are needed to investigate,such as the factors affecting the parameters estimation,the mutual effect of different parameters in inversion process and so on.In the paper,we investigated the factors which affect the parameter estimation from the inversion process aiming at directing the parameter inversion.One of the accuracy indices for the inversion result is the root mean square error(RMSE).For the inversion result,the smaller RMSE is,the higher inversion accuracy is.We investigated the formulae of the RMSE based on the physically based canopy-reflectance model.Through mathematical formulae and physical mechanism,we can know that the factors affecting the RMSE consist of canopy reflectance data quality,the sensitivity of parameters and the correlation of the parameter sensitivity.That is to say,as to the sensitivity of parameters,not only the parameter sensitivity but the correlation of the parameter sensitivity the factors affect the parameters inversion accuracy.In other words,the relative sensitivity of the parameter has effect on the parameter inversion.We should make two kinds of progress for high accuracy parameter inversion.One is about the quality of canopy reflectance data.Remote sensing data are often contaminated with noise from various sources,such as radiation calibration,atmosphere correction,geometric registration and some random noises.The other is the sensitivities of the parameters and the correlation of the parameter sensitivity.We can make the suitable inversion strategy based on both the quality of the canopy reflectance data and the parameters sensitivities.The CR model is the SAIL model and the inversion method is the modified least square method in this paper.We validated the factors which affect the LAI inversion accuracy through LAI inversion based on simulated CR data sets.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群