首页 >  2007, Vol. 11, Issue (5) : 710-717

摘要

全文摘要次数: 4138 全文下载次数: 82
引用本文:

DOI:

10.11834/jrs.20070597

收稿日期:

修改日期:

2006-08-10

PDF Free   HTML   EndNote   BibTeX
基于GIS和神经网络的森林植被分类
1.国家林业局调查规划设计院,中国 北京 100714;2.中国科学院生态环境研究中心,中国 北京 100085;3.北京林业大学资源与环境学院,中国 北京 100083
摘要:

本文综述了国际遥感分类研究,使用Landsat7 ETM+遥感数据和地理辅助数据,应用BP神经网络方法,将莽汉山林场作为研究区进行了遥感影像的分类研究。比较了BP神经网络分类与最大似然、简单和复杂非监督分类法之间的类型与数量精度。BP神经网络分类的总类型精度是70.5%,总数量精度为84.65%,KAPPA系数是0.6455。结果说明BP神经网络的分类质量优于其他方法,其总的类型精度与其他三种分类方法相比分别增加了10.5%、32%和33%,总的质量精度增加了5.3%。因此,辅以地理参考数据的BP神经网络分类可以作为一种有效的分类方法。

关键词:

遥感  分类  森林  神经网络
Artificial Neural Network Classification for Forest Vegetation Mapping with Combination of Remote Sensing and GIS
Abstract:

In this paper, we present the results ofour research to evaluate the accuracy of the back propagation neural networkmethod to classify forestvegetation using a27July2001Landsat7ETM+image of the Manhanshan Forestry Center. The type and quantitative accuracy of the back propagation neuralnetwork are comparedwith themaximum like-lihood, the simple and the complex unsupervised classificationmethods. The total cover type accuracy ofback propaga-tion neural network classification is70·5%, the total quantity accuracy is84·65%, and the KAPPA coefficient is 0·6455. Our results indicate that the total type accuracy increases10·5%、32% and33% respectively compared to the other three classificationmethods. Totalquantitative accuracy increases5·3%. It is evident that the classification quality of the back propagation neuralnetwork is better than the othermethods. Therefore, the back propagation neuralnetwork is an effective and accuratemethod of classifying forestvegetation.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群