首页 >  2007, Vol. 11, Issue (1) : 55-61

摘要

全文摘要次数: 4962 全文下载次数: 98
引用本文:

DOI:

10.11834/jrs.20070108

收稿日期:

修改日期:

PDF Free   HTML   EndNote   BibTeX
基于经验模态分解的高分辨率影像融合
1.中国矿业大学环境与测绘学院,江苏 徐州 221008;2.中国测绘科学研究院摄影测量与遥感研究所,北京100039
摘要:

文章提出基于经验模态分解(Emp iricalMode Decomposition,EMD)的特征层影像融合模型。对多光谱波段影像进行IHS变换获得强度影像,采用行列分解实现一维经验模态分解的二维拓展,并用于分离高分辨波段影像与强度影像的细节特征信息,对高分辨率波段影像的高频与强度影像波段的低频进行重构获得融合后的强度影像,再通过IHS反变换获得融合影像。文章介绍了经验模态分解的基本原理,定义了经验模态分解的多尺度分解与合成结构,提出融合模型的技术路线。选择UICKB IRD影像的全色波段与多光谱波段进行融合实验,根据典型行(列)的EMD分析,确定经验模量的取舍尺度,按提出的融合路线获得融合影像,并与小波融合,IHS融合,Brovey融合模型获得的影像进行视觉及量化比较。选择信息熵、标准差指标对融合影像的空间细节信息进行评价,同时选择平均灰度值、相关系数、偏差指数评价融合影像的光谱扭曲程度,结果表明本融合模型最优。

High Resolution Image Merging Based on EMD
Abstract:

Image fusion on high resolution image is one of the most important contents in remote sensing community.In this paper,image fusion algorithm based on Empirical Mode decomposition(EMD) is put forward for the first time.Firstly,intensity image is obtained by IHS transform on multi-spectral image.Secondly,high frequence component and low frequence component of high resolution image and intensity image are separated with 2D EMD realized by means of row and coloum extension of 1D EMD,which are applied to perform image fusion experiment of high resolution image.At last,fused intensity image is obtained by reconstruction with high frequence of high-resolution image and low frequence of intensity image and IHS inverse transform result in fused image.After presenting EMD principle,multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and fusion technique scheme is advanced based on EMD.Panchromatic band and multi-spectral band3,2,1 of QUICKBIRD are used to assess the quality of the fusion algorithm.After selecting appropriate Intrinsic Mode Function(IMF) for the merger on the basis of EMD analysis on specific row(colum) pixel gray value series,the fusion scheme gives fused image,which is compared with generally used fusion algorithms(Wavelet,IHS,Brovey).The objectives of image fusion include enhancing the visiblity of the image and improving the spatial resolution and the spectral information of the original images.For assessing quality of an image after fusion,information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient,bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information.For all the proposed fusion algorithm,better results are obtained when EMD algorithm is used to perform the fusion experience.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群