下载中心
优秀审稿专家
优秀论文
相关链接
摘要
相似性度量是用于研究多源数据之间相似程度的,是对空间数据进行模式识别的基础。通过单波段遥感图像的检索对两组直方图相似性检索方法进行了实验研究,即基于特征向量的相似性度量和基于概率的相似性度量。实验中发现第一组相似度量中有两种以往较少用于遥感图像检索的方法表现出色,它们分别是,统计距离和相似夹角余弦度量。第二组实验中,针对其中包含较明显的目标物体且背景较为单一的遥感图像(其直方图可看作混合高斯分布),在类别可分离判据的基础上,根据K-近邻法则提出了一种计算该类图像之间相似值的方法。实验结果表明基于K-近邻法则的计算方法行之有效。所得出的结论将对多源数据分析中相似性度量的理解与选择有积极意义。
Smi ilaritymeasure is usually used to study the smi ilar degree betweenmultisource data, which is\nthe basis ofpattern recognition on spatialdata. In thispaper two kindsofsmi ilaritymeasures are expermi entally\ninvestigated through some remote sensing mi age retrievals, they are feature vector based measures and\nprobabilisticmeasures, accordingly two groups expermi ents are designed to compare themeasures forapplication\nto remote sensing mi age retrieva.l From the expermi ent results we find that in the first group two measures\nseldom used in the literature perform wel,l they areχ2statistical distance measure and cosine of the angle\nmeasure. And in the second group expermi ents, for computing the smi ilarity degree of two mi ageswith their\nhistograms obeying mixture Gaussian distributions, we present a method on the basis of class separability\nmeasures according to the K-nearest neighbor rule. The expermi ent results show that the method has good\nperformance. We believe that the results described in this paper will be of significance in applications to\nmultisource data analysis.