下载中心
优秀审稿专家
优秀论文
相关链接
摘要
目前,相位解缠的方法中以Goldstein提出的枝切法最为经典,它通过枝切线将残差点相互连接使得残差点电荷中和,在相位展开处理的积分中,积分路径不能穿过分支,从而限制误差的传播。但是由于枝切线连接策略的不合理,往往造成连成的枝切线过多、过长,甚至多条枝切线形成闭合区域,造成不能解缠的“死区”,特别是在残差点较多的情况,这种现象更为严重。本文在最小生成树原理的基础上,提出的枝切线冗余去除算法能简单、准确地去除枝切树中的冗余,并保证了相位解缠具有最好的效果。
Goldstein's branch-cut algorithm is now the most classical one of the known phase unwrapping algorithms.It connects residues with branch-cut lines to neutralize their charges so that the integral path(can't) stride over the branches in the process of phase unwrapping,thus avoiding pervasion of error.However,due to improper connections,this always brings about excessive branch-cut lines,and even many lines form a closed 'dead area' that can not be unwrapped,especially when many residues exist.This paper presents a removal redundancy algorithm in phase unwrapping based on minimum spanning tree theory,and its implementation is described in detail.It can accurately remove the redundancies of the branch-cut tree and ensure the effectiveness of phase unwrapping.