下载中心
优秀审稿专家
优秀论文
相关链接
摘要
遥感图像的自动分类方法一般基于图像的统计信息。多光谱遥感图像之间有着一定的相关性 ,对遥感图像的自动分类有不利影响。一般用主成分分析去除波段之间的相关性。独立分量分析能利用相对主成分分析更高的统计分量 ,不但可以获得去相关的效果 ,而且可以得到相互独立的结果波段图像。本文首先讨论了独立分量分析的基本原理。在此基础上 ,介绍FastICA算法 ,并对其进行改进 ,得到M FastICA算法 ,并将其应用到遥感图像的分类上。实验结果表明 ,M FastICA算法较FastICA算法收敛性大为改善 ,提高了独立分量分析在遥感图像的分类上的有效性
关键词:
独立分量分析 主成分分析 固定点算法 遥感图像 自适应最小距离分类法The automatic classification methods for remote sensing images are usually based on statistic information of the images. It has correlation among multi-spectral remote sensing images, and the correlation is a disadvantage to automatic classification of remote images. Commonly, Principal Component Analysis (PCA) is used to remove the correlation. Independent Component Analysis (ICA) can obtain higher order statistics information than PCA. It not only can remove the correlation, and also can obtain band images that are mutual independent. Firstly the fundamental of Independent Component Analysis is briefly introduced. Then, a fast algorithm of ICA (FastICA) and its modification (M-FastICA) are introduced, and are used to classify the remote sensing images. In the result, compare to basic FastICA algorithm, M-FastICA runs quickly and has better convergence performance, and improves the validity of the ICA in classifying of the remote sensing images.