下载中心
优秀审稿专家
优秀论文
相关链接
摘要
介绍及建立了对SARS(Severe acute respiratory syndrome)临床诊断累计病例预测的非线性增长模型:SI(Susceptible and infective)模型和分段SI模型,并对北京SARS累计病例进行了预测。分段SI模型转变点的95%的置信区间在4月21日、22日和23日内,表明我国政府采取了有力措施后,4月24日以后,SARS病例的增长率发生显著变化。
This paper introduces and sets up some kinds of nonlinear growth models, the SI(Susceptible and infective) model and piecewise SI model, for forecasting clinical diagnose cumulative SARS(Severe acute respiratory syndrome) cases is Beijing. The 95% confidence interval of the time change point on piecewise SI model is made well which includes April 21, 22 and 23. It means some control policies in Beijing at the end of this April 24 played an important role for anti-spreading of SARS, after change of increase rate for SARS cases is quite significant.