下载中心
优秀审稿专家
优秀论文
相关链接
摘要
利用分形几何学对土地利用类型分维公式进行了应用分析。实验结果表明:土地利用类型的分维值介于1到2之间,土地利用类型与分维值有密切关系。土地利用类型的分维值反映了土地利用的复杂程度、稳定程度和变化趋势。分维值D为1.5,是土地利用变化的临界值点,代表该土地利用类型处于布朗随机运动状态。分维值越接近该临界值,该土地利用类型的稳定性越差,复杂程度越高;反之,则该土地利用类型的稳定性较强,复杂程度较强,复杂程度较低。不同时相间不同土地利用类型的分维值的大小变化反映了土地利用类型的变化趋势,分维值增大,则土地利用类型扩张,反之,则缩小。
Based on fractal geometry method and land use graphics database, this paper describes an algorithm for fractal dimension of land use types. The algorithm is a fractal dimension expression about area and perimeter. And this algorithm is applied to analyze the change feature of land use types. The experimental results indicate that fractal dimension ( D ) values vary from 1 to 2 and the certain land use types is associated with the fractal dimension D . The D of land use types reflects the degree of complexity, stability and change tendency of land use change. When the value of D is 1.5, namely D is critical value; the change mode of land use types is Brown random movement. The more the value of D is closer to the critical value, the more the stability of land use type is worse, and the complexity of land use type is higher; verse vice. Moreover, the D change or certain land use type reflects the change tendency of this type in different time periods. When the D of certain land use type increases, its area also increases; verse vice, its area decreases. The experiment has been done and supports this conclusion.