首页 >  1998, Vol. 2, Issue (3) : 171-175

摘要

全文摘要次数: 3690 全文下载次数: 13
引用本文:

DOI:

10.11834/jrs.19980303

收稿日期:

1997-10-27

修改日期:

1998-01-08

PDF Free   HTML   EndNote   BibTeX
一种基于预测树的多光谱遥感图像无损压缩方法
摘要:

最小绝对权值(MAW)预测树方法是一种有效的多光谱遥感图像无损压缩方法, 但其中构造预测树的算法复杂, 实现困难。本文对预测树方法进行改进, 提出一种侧邻域最小绝对权值(SNMAW)预测树方法, 通过改变预测树的四邻域定义, 使构造预测树的算法简化, 并且, 实验结果表明, 对不同类型的多光谱遥感图像, SNMAW的压缩效果与MAW的压缩效果相近或有所改善。

A Prediction Tree-based Lossless Compression Technique of Multispectral Image Data
Abstract:

Minimum Absolute Weight (MAW) prediction tree technique is one of the efficent lossless compression techniques for multispectral image data, but its algorithm is complex. In this paper we proposed an improved method which changes the definition of the 4-neighborhood model. we call it side neighborhood minimum absolute weight (SNMAW) prediction tree technique. lt can simplify the algorithm and improve the results of lossless compression.

本文暂时没有被引用!

欢迎关注学报微信

遥感学报交流群