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Abstract: Traditional Cellular Automata (CA) requires parameter adjustments and results modification to improve performance
especially in a long simulation period. This paper introduces the ensemble Kalman filter (EnKF) into the CA model and proposes a
new geographical cellular automata model based on joint state matrix. The model will adjust model parameters and correct simula-
ted results dynamically in the process of simulation by assimilating remote sensing observations. The change of model parameters
can properly reflect temporal and spatial variations in the transition rules. Besides, the model can effectively release accumulated
model errors. It was applied to the urban expansion simulation of Dongguan, Guangdong province, China. Experiments indicate
that this model can modify the parameter value which can properly reveal the urban development pattern. It also can produce more

reasonable results than logistics CA model and EnKF CA model in simulating this complex region.
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1 INTRODUCTION

The changes of urban land use affect not only the social
economies of the local and surrounding areas, but also the
regional or even global ecological environments. Studies have
shown that the expansion of urban land use has an important
contribution to the local economic growth. The intensification
level of urban land use is closely related to economic growth,
industrialization and urbanization (Nusrath & Shabeer, 2011).
Urban land use changes have a profound impact on global
climate change. They affect climate not only by changing the
surface albedo, surface roughness, leaf area index, soil humidity,
but also through the tropical island effect, carbon cycle, and so
on (Charney, et al., 1977; Houghton, et al., 1983; Brovkin, et al.,
1999).

Model simulation and remote sensing observations are two
methods which can study and determine urban land use changes
(Li & Huang, 2004 ). Model simulation can simulate the
evolution process of urban area in time and space based on the
inherent physical processes and dynamic mechanism of urban
expansion. Cellular automata (CA) model is one of the most
commonly used simulation tools (Li & Yeh, 2004). Remote sens-

ing observation method can obtain true situation of urban land
use at the observation time (Li, et al., 2007).

CA models are bottom-up approaches based on grid
dynamic model controlled by local rules. They provide useful
tools to simulate and predict complicated dynamic system behav-
iors. In CA model, the outcome at the previous iteration has deep
impact on the outcome at the next iteration. Complex global pat-
terns can be formed after many simulation iterations. Because of
their strong modeling capabilities, CA models have been used for
solving geographic problems (Wolfram, 1984; Couclelis, 1988).
CA models are simple that the process of spatial evolution of
land use change can be simulated conveniently by setting the
simulation rules, model parameters, and initial value (Tobler,
1970; Batty & Xie, 1994; Chen, et al., 2004). They play
important roles in studying the mechanism of urban land change
and in understanding the process of spatial evolution of land use
change (Clarke, et al., 1997; Li & Yeh, 2000; Wu, 2002). It is
also significant in understanding and verifying the assumptions
(theories) in urban geography (Couclelis, 1985; White &
Engelen, 1993). Moreover, the global and local land surface
models often require accurate land use information to achieve
more objective results (Lawrence, et al., 2011). However, studies
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show that the CA model still suffers from uncertainties. (1) CA
models always simplify complicated changing processes. For
example, most CA models assume that the urban evolution rules
remain unchanged, and they adopt static model parameters in the
simulation process (Li & Liu, 2006). (2) Errors accumulate too
fast during the simulation process. Urban evolution processes are
complicated and non-linear. Thus, errors from data sources (e.g.,
field survey errors, digitization errors, and data conversion
errors) are transferred and accumulated continuously during the
simulation process (Li, et al., 2007).

Remote sensing is an alternative but effective approach to
determine urban land use changes. It uses remote sensing inter-
pretation and image recognition technology to extract urban
change information from remote sensing images (Seto, 2002). It
has greatly improved in terms of both accuracy and efficiency
compared with early statistical or field survey. Remote sensing
images have natural advantages, such as wide regional coverage,
periodicity, continuity and economic efficiency. They can
precisely determine the land use conditions in study area at a
certain time. And researchers can easily study urban land use
(i.e., space-time evolution, mechanism, and effect on social econ-
omy and local/global environment) to support national or
regional sustainable development departments. By overlaying
multi-phase image, some information, such as number and spatial
location of land use changes, can be obtained. Such information
is very important for land resources such as farmland, forest, and
so on (He, et al., 2001). However, using only remote sensing
data, it is difficult to achieve the spatial-temporal evolution of
urban land use changes. The main reasons are listed as follows.
(1) Remote sensing data record only the land use conditions of a
study area at a certain time. Conversely, the evolution of urban
expansion must be continuous in time and space. Therefore, it is
necessary to use simulation model to extend remote sensing
observations to temporal and spatial dimensions (Li, et al., 2007).
(2) Remote sensing data have a series of uncertainties and errors,
such as sensor error, atmospheric disturbance error, classification
algorithm error, and so on (Li & Yeh, 1998).

CA simulation and remote sensing observation have their
limitations. They should be integrated to develop an urban
expansion model which can generate more reliable simulation
results. Only a minority of researchers tried to solve the
problems. Based on the Monte Carlo method, Clarke, et al.
(1997) adjusted model parameters dynamically by combining
with historical observation data. Their method requires numerous
computations and a high-performance workstation has to run for
several hundreds of hours. Yang and Li (2007) obtained the
model parameters by using the genetic algorithm. However, this
method requires all the observations of study area which cannot
always be obtained in reality. Li and Liu (2007) proposed a CA
model using case-based reasoning. The transition rules of the
model can be updated by introducing into new cases. The model
can update the transition rules but cannot control error accumula-
tion in the process of simulation. Zhang, et al. (2011) proposed a
CA model based on data assimilation (EnKF CA), which can
control the accumulation of model errors by introducing data
assimilation into CA model. However, this model adopts the
static transition rules (parameters). To some degree, existing

studies can integrate CA simulation and remote sensing observa-
tions to adjust the model parameters or simulation results. How-
ever, studies on correcting model rules (parameters) and control-
ling error accumulation simultaneously have not been reported.

To overcome the weakness of traditional CA model based
on static rules, this paper proposes a new CA model based on
joint state matrix, which can update model parameters and simu-
lation results simultaneously in simulation process. The best
advantage of this Ensemble Kalman Filter (EnKF) assimilation
method based on the joint state matrix is that it can update the
model parameters and status at the same time. Thus, it not only
can dynamically adjust the model parameters, but also can reduce
model error accumulation effectively. It is especially adapted to
simulate complicated nonlinear systems with long simulated
times (Aksoy, et al., 2006). Some scholars have applied the joint
state matrix method to the two-dimensional nonlinear sea wind
model (Aksoy, et al., 2006), the three dimensional cloud model
(Tong & Xue, 2008), the atmospheric dispersion model (Zheng,
et al., 2009) and achieved satisfying results. This paper tries to
introduce the joint state matrix into CA to simulate the urban
expansion of Dongguan. In the simulation, multi-phase remote
sensing observation data will be imported into CA model to
update the parameters and results dynamically. It also will reflect
the self-adaptation feature of this CA model.

2 GEOGRAPHICAL CA BASED ON JOINT
STATE MATRIX

Evensen (1994) proposed EnKF which is based on the
stochastic dynamic prediction theory of Epstein. First, the algo-
rithm generates the initial set of states using Monte Carlo method
and ensemble forecast. And then, the initial set of states is
entered into the model to make a prediction and a predicted set is
obtained. Follow that, the predicted set and the observation set
are entered into the EnKF update equation to obtain the analysis
set of states. Finally, the analysis set is used as initial set for
prediction and assimilation. The cycle repeats itself until the
observations are not available. (Evensen, 1994; Li & Bai, 2010).
The best advantage of this algorithm is that it does not require a
linear observation operator and the adjoint model. And it can
avoid calculating the error covariance matrix with a large
computation. To update the model parameters and states at the
same time, Aksoy, et al.(2006) used the joint state matrix meth-
od. This method integrates the state set and the parameter set into
the same matrix (joint state matrix). The joint state matrix, which
consists of the states and parameters, will be updated in the
assimilation process. The implementation steps are listed as
below.

(1) Initial stage. The parameter set is initialized.

bf)=80+e:) (D)
where b, is the parameter value after disturbance. b, is the initial
parameter value. ¢, is the Gaussian noise, and the subscript “0”
refers to t=0.

(2) Prediction stage. Each group of parameters will be
entered into the model. And the predicted state set can be
obtained at the next observation time ¢. The simulation process
can be expressed as
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X, = f(X1,0) (2)
Y, = H(X[,b7) = H(X,") (3)
where the “ -7, “+7 refer to before and after update,

i

respectively. X, is the state variable after update at time ¢—1.

X" is the state variable before update at time ¢. f is the predicted

model (i.e., the CA model in this paper). f’: is the simulation
observation variable mapping to the observation space, XJ,_ is the
joint state matrix consisting of model states and parameters, and
H is the observation operator.

(3) Analysis stage. The EnKF update equation integrates the
joint state matrix and the observation set to obtain a new joint
state matrix which includes the new parameters and states.

X =X +K[Y -¥] (4)
where X;;” and X" are the joint state matrix before and after
update, respectively, Y! is the observation matrix, and K, is the
Kalman gain for updating the joint state matrix, expressed as
K, =P H'[HP H +R,]"' (5)
In the equation,
1
N -1

N
Z(in_ -X) (X7 X)) X, =

%Zx (6)

where P, is the predicted error covariance matrix. In practice,

P, =

P H" and HP;H" are always calculated directly to reduce

computation. R, is the observation error covariance matrix, X, is
the mean value of state variable, and /V is the number of sets.

(4) End stage. If observations are still available, the new
model parameters and the new states obtained during the
previous analysis stage are entered into the model. Step(2) is
repeated for the simulation at time ¢+1. Otherwise, the process is
completed.

The process of urban development is always nonlinear.
However, the traditional CA model will result in linear
simulation situation because it cannot dynamically adjust the
model parameters and the simulated results in the simulation
process. Thus, its simulated results do not conform to actual
conditions. EnKF that based on the joint state matrix can update
the parameters and states of the model by assimilating
observation data. The method is very popular in simulating
complicated nonlinear systems. We have done initial studies in
integrating EnKF with the CA model, and a CA model based on
data assimilation was proposed to correct simulated results.
Based on previous study, the joint state matrix is introduced into
CA model to dynamically update the parameters of the transition
rule in the simulation process and to correct the simulated results.
The flow diagram of update model parameters and results are
shown in Fig.1, which mainly includes the following steps.

Step 1 Generation of parameters sets. Gaussian perturbation
is added to the model initial estimated parameters (model param-
eters are the coefficients of spatial variables and the number of
model parameters is marked as n). Each parameter is disturbed
by adding a set of Gaussian noise (where the number of
Gaussian noise set is N, and N is the ensemble size of EnKF).
The generated random parameter set can be expressed as:

by" = by + e (7)

in . «th . h .
where by" is the i" value in n" parameter set after perturbations.

by is the initial estimated value of n" parameter. e," is the Gaussi-
an noise, its variance is the normal distribution of the predicted
value, superscript ¢ is the series number of the parameter set
members (i=1,2,---,N), and subscript “0” refers to :=0.

-

CA Model

! )3

Simulation results

Model parameters

vt
4\ " |;{:\'_.,

Joint state matrix ‘

Parameters

Development density

<

Remote sensing
e e

ok
EnKF G Fimeynal
Update g [(¥, )-HOX, ) “Pemair... i

Ly

T T

Correct simulation results

Control parameters

Simula}tion 4 o p=s
results No & es =
— { End EEp| 7
Parameters L &~

Fig.l1 Updating the parameters and states of the
CA model using the joint state matrix

Step 2 Simulation using logistic regression CA model. Each
group of parameter combinations are entered into the CA model
for urban simulation, and different simulated results can be
obtained. The CA simulation process can be expressed as

Si =SS0, b0 by b)) (8)
where f is a transfer function that defines the state changes from
time ¢—1 to the next time ¢. £2, is a neighborhood function. b, is
the n" parameter in the parameter combination of group i, and
Si, and S are the descriptions of the status of all cells at times
t—1 and ¢, respectively. The probability of cell (i,)) before trans-
formation can be expressed as (Wu, 2002 ;Li ,et al., 2008):

P:iiilf =
RA x con(si}') x 0
1 +exp[—1x%(a+b xu 9

+ D7 X AT A + B X 2" ]

(9)
where RA is a random item. £2; is the development intensity in 3
%3 neighborhood. con is the total constraint ranging from 0 to 1,
which indicates the suitability for urban land development (Li,
et al., 2008). « is a constant item. b," is coefficient of spatial
variable, and x" is the n" spatial variable.
At each iteration, p); i, is compared to determine if a non-
urbanized cell will be converted into urbanized cell (Liu & Li,
2007). It is expressed as
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Developed, p. . > rand,(i,j
ped, pq ( J.) (0
Undeveloped, p;; < rand,(i,j)

s() = {
where S,(i,j) is the state of the cell (i,j) at time ¢, and rand,
(i,j) is a random number from 0 to 1 that changes with time.

Step 3 Conversion of the simulated results. The use of NV
groups with different parameter combinations in CA model will
And the results will be

integrated into the state matrix to calculate the state error covari-

,1,,

yield different simulated results.

ance. The state matrix requires the state value to be the real type.
However, the simulated results of the CA model only have two
states (i.e., urbanized or not). Thus, it is necessary to make some
conversions. This paper divides the study area into regular grids
with each grid contains mxm pixels (cells). Urban development
density is used as state to be included in the data assimilation
operation. The relationship between the state matrix from data
assimilation X'(development density) and the simulated results of
the model S’ can be expressed as

X' = y(S,m) (11)
where m is the side length of the grid. The urban development
density of each grid is given by

2 con(s; = urban)

X, = (12)

re mxXm

where the subscripts 7, ¢ are the row and column numbers of the
grid. The relationship between the number of the grid (r,c) and
the number of the simulated results (i,j) is given by r=int(i/m)
and c=int(j/m) respectively. Development density can be used
to calculate the error covariance. Similarly, the observation value
is also represented by the development density.

Step 4 Establishing and updating the joint state matrix. The
parameter values used in CA model will be integrated with the
development density of the simulated result to a joint state matrix
X/(i.e., parameters bt b* -++ b are used as states to be added
to the original state matrix X to create a joint state matrixX; that
contains parameters and states). The joint state matrix X;, instead
of X, is entered into the update equation of the EnKF. Therefore,
the updated parameters and states can be obtained after assimila-
ting observation data.

X, =X +K[Y -V] (13)

Step 5 Correcting the simulated results and controlling the
distribution of the model parameters. The correction of the simu-
lated results based on updated states can be found in Zhang,
et al. (2011). In filtering applications, when the prior distribution
of a parameter is too narrow, the posterior distribution
divergence will occur after data assimilation (Anderson &
Anderson, 1999). One method that avoid filtering divergence is
the minimum standard deviation method by using a threshold
value. When the standard deviation of the parameter set is
smaller than the threshold value, the standard deviation of the set
is adjusted to the set threshold value. This method not only can
ensure the narrowest distribution for a parameter, but also can
avoid the continuous expansion of a set distribution caused by
the expansion coefficient method (Aksoy, et al., 2006).

Step 6 Repeating Step 2 after entering the newly corrected
simulated results and adjusted parameters into CA model. This
cycle is performed continuously until all observation data are
assimilated.

3 EXPERIMENTS AND ANALYSIS

3.1 Data and parameter settings

Dongguan was selected as the experimental area in this
paper. The initial simulation data were the classification data
from the remote sensing TM land use in 1993. The spatial varia-
bles of the logistic regression CA model (Fig.2) include distance
to town center, distance to (common) road, distance to highway,
and distance to railway. The initial weights of the distance and
spatial variables in the logistic regression CA model are shown
in Table 1. The weighted values were obtained by using logistic
regression in SPSS software on the samples from 1993 to 1995.

™ P

(a) Distance to railway

(b) Distance to highway

(d) Distance to town center

(c) Distance to road

High:1
Low:0

[ E—

0 10 20 km

Fig2 Space distance variable

Table 1 Initial value of model parameters in CA simulation

Common road Town center  Constant

-6.089 —5.423 -0.900

Space variable  Highway  Railway

-0.738 0.601

Initial value

In this paper, the study area was divided into 257 (13%19)
regular grids. Each grid has 40x40 pixels (cells). Thirty observa-
tion points (grids) were selected (Fig.3). The position and the
number of observation points remained unchanged during the
simulation process. The development intensity values of the
observation points were obtained from the large-scale CAD data
or QuickBird image in the corresponding area.
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The parameter variance has great effect on the simulated
results of the model. In the filtering process, minimum standard
deviation method was used in this paper to ensure filtering
convergence. The minimum standard deviation was one fourth of
the initial standard deviation ( Aksoy, et al., 2006). The
simulation accuracy of the traditional CA model is about 80%,
and the model error is 0.2. The observation error was mainly
from resampling, and it was set to 0.05. The analysis error was
set to 0.025. An ensemble size of 30 to 50 in general can meet
the requirements. If the ensemble is oversized, the computations
will be numerous, and the improvement in simulation results will
not be obvious. If the ensemble is small, the statistical nature will
not be reflected, and the error will be large (Crow & Wood,
2003). Thus, the ensemble size for this paper was 30.

3.2 Model application

The model proposed in this paper was applied in Dongguan,
Guangdong province. The urban land use in 1993 was used as
the initial simulation data. Fig.4 shows the simulated results of
the model during the three stages, 1993—1997, 1997—2001,
and 2001—2005. The urban development of Dongguan in
1993—2005 went from slow to fast, particularly from 2001—
2005. Urban expansion speed was accelerated, and urban land
use obviously increased. Based on the urban landscape morphol-
ogy, the urban expansion in Dongguan was slow in 1993—1997,
and urban land was focused in the town center. In 1997—2001,
the urban expansion was fast. The pattern of urban expansion
also changed from expansion in the town center to expansion in
the town center and along the roads. In 2001—2005, the speed
of urban expansion was faster than that in previous stages. And
the area of urban land use increased even more. It also can be
found that the simulated results of the joint CA were similar to in
real situations. Table 2 shows that the urban expansion pattern
change over time (i.e., the parameter values of common roads
and high ways became large, and the parameter values of town
centers became small). In Table 3, the accuracy of the joint CA

Year 1997

True

EnKF CA Logistios CA

Joint CA

Urban Water 0 10 20 km

Fig4 Comparison of the simulated results among different methods

model in 1997, 2001, and 2003 are 88.4%, 79.8% and 69.2% .
And the Kappa coefficients in 1997, 2001, and 2003 are 0.587,
0486 and 0.368, respectively. Clearly, the simulated results of
the joint CA had better effects, whether in spatial form or point-
to-point simulation accuracy. These results also showed that the
joint CA can not only couple remote sensing observation data
during the simulation process, but also adjust the model
parameter to depict the actual urban development mode.

Table 2 Changes in the model parameters

Highway Railway Common road Town center  Constant term
1997 -0.530  0.161 -3.454 -1.728 0.472
2001 -0.386  1.111 -2.298 -2.646 0.027
2005 -0.454  1.071 -2.579 -2.491 0.706

Table 3 Simulation accuracy and Kappa coefficient

Accuracy/ % Kappa coefficient
Yeur Logistic CA  EnKF CA  Joint CA Logistic CA EnKF CA  Joint CA
1997  87.7 87.9 88.4 0.550 0.568  0.587
2000 76.9 79.0 79.8 0.428 0.475  0.486
2005  64.0 68.4 69.2 0.279 0.364  0.368

3.3 Model comparison

To verify the effectiveness of the proposed model, we used
three different models and compared their results. The three
models were the traditional logistic regression CA model, the
EnKF CA (Zhang, et al., 2001) model and the joint CA model.
The simulation results were used to compare with the actual situ-
ation. The actual situation can be obtained after atmosphere,
geometric corrections and object-oriented classification of the
remote-sensing image TM. Fig4 shows the comparison of urban
land simulated using all models and practical urban land.

In general, the simulated results of all the models are similar
to the actual situations in 1997. Up until 2001, the results of
logistic regression CA model were different from actual
situations. In 2005, the simulated results are non-ideal with
lowest accurate results. Conversely, the simulated results of the
EnKF CA model are better than those of the traditional CA
model. In 2005, the simulated results of EnKF CA also have
evident errors in the northwest and southwest of the study area.
However, the joint CA model can well reflect the reality.

Most new urban lands were around the original urban lands
in 1997. All models can change the rural cells of high suitability
into urban cells. Therefore, the three models showed few differ-
ences in term of variance or simulated results (Fig4 and Table 3).
And the results are similar to actual situations.

The actual scene shows that the urban development style
from 1997 to 2001 is expansion along the roads and in the town
centers, different from the simple expansion in the town centers
at previous stage. However, the new urban lands in logistic
regression CA model are mostly focused on the city center
different from actual scene. And there are some errors in the
western, Humen in the southwest and Dalingshan, which is south
of the study area. The error of logistic regression CA model is
larger than others, mainly because the model parameters and the
simulated results cannot change in the simulation process. The
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EnKF CA model can better control the expansion in the city
center, Humen, and Dalingshan. The simulated results were
corrected and better than those of the traditional logistic
regression CA models. The joint CA model can obtain even
better results, particularly in the eastern of the study area. The
expansion along the roads is obvious, which agrees with the
actual situation. The model can adjust parameters correctly,
reflecting the mode of urban development properly. In Table 2,
the parameter values of the “highway” and the “common road”
in 1997—2001 increase, and the parameter value of the “town
center” decreases. This information indicates that the expansion
of the model simulation along the roads is increasingly obvious.
However, it does not imply that the expansion of the town center
is becoming less. The main reason is that the “road” (including
highways and common roads) has a certain correlation with the
“town center” (the related coefficient of the town center to the
common road is 0.514). The situation reflected by the parameter
changes of the joint CA model is consistent with the expansion
pattern of the study area. The simulation results also indicate that
the model is effective and consistent with the actual situation.

In 2005, urban expansion in Dongguan is obvious. The
simulated results of logistic regression CA showed that many
new urban lands are focusing in Machong (northwest of the
study area), Shijie (north of the study area), Shatian (southwest
of the study area), and Dalingshan (South of the study area).
Only a few new urban lands emerged in Fenggang (southeast of
the study area). The reason for these results is that the logistic
regression CA model still used the previous expansion pattern,
expanding in the town center, so that large errors were incorpo-
rated into the simulated results. Although EnKF CA can better
reflect the urban expansion than Logistic CA model, it also has
simulation errors. The simulation results, containing Shatian in
the southwest, Dalingshan in the south, Qingxi in the southeast,
and Shijie in the north, greatly differed from actual situations. In
these areas, the joint CA can achieve better performance. The
model can reduce the error to a large degree. It can also reasona-
bly reflect the actual situation of urban development by
integrating the simulated results with observation data, adjusting
the parameter values of the CA model and correcting the simula-
ted results.

Aside from comparing the simulated results, we also
compared the simulation accuracy and the kappa coefficient of
each model (Table 3). The table shows that the logistic regression
accuracies and the Kappa coefficients in 1997, 2001, and 2005
are 87.7% and 0.550, 76.9% and 0.428, 64.0% and 0.279,
respectively. Logistic regression CA cannot adjust the model
state and parameter. Therefore, its accuracy and coefficients is
the lowest. Compared with the logistic regression CA model,
EnKF CA can adjust the simulated results in the simulation
process. It released the accumulation of the model error to a cer-
tain degree. Therefore, its accuracy has improved. In 1997, 2001,
and 2005, the accuracies and the Kappa coefficients of EnKF CA
are 87.9% and 0.568, 76.9% and 0.475, 68.4% and 0.364,
respectively. The EnKF CA model considers the accumulation of
errors in the simulated results but neglects the dynamic changes
in the model parameters. The joint CA model considers the chan-
ges of model parameter and the accumulation of model error.

Therefore, it is more reliable than the logistic regression CA and
EnKF CA models, as indicated by the improved accuracy by
05%,0.8%, and 0.8% in 1997, 2001, and 2005, respectively,
compared with that of the EnKF CA model.

4 CONCLUSION

In this paper, EnKF were introduced, and a new CA model
based on the joint state matrix was proposed. In this model, data
assimilation method was used to integrate the CA model with the
remote sensing observation data, correcting the model parameters
and the simulated results automatically. The experiments in
Dongguan showed that the model can precisely correct the model
parameters which are consistent with urban expansion pattern.
Besides, the model can adjust the simulated results to better
represent the actual situations. Based on the simulation accuracy
and Kappa coefficient results, the simulation proposed in this
paper is better than the traditional logistic regression CA model.
Compared with the EnKF CA model, the proposed model is
more suitable to the situations as the model parameters (transition
rules) can change with time. It has a strong adaptive capacity for
simulating complicated nonlinear geographies. However, if the
number of model parameters are too many (e.g., more than 10),
the simulation results of joint CA model will have poor perform-
ance. In future, we will try to improve the simulation
performance for conditions of many model parameters.
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B33 B AZ R T 0 I A 23 (8] b 14 AH B S T 5 con
JETuHE A SRIEYE, H AT 0—1 M{E R+ HubR T
KBTS FME(Li 45,2008) ;0 R 8 800, 60" Ry s (]
A R " R n A ) AR

JCHIL(i,7) BRI A8 AR 8 ol B ok
T AW/ FIER L ,2007), FRIB 0 :
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S.(i,)) = 10
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About the Cover

20105+ EHBERISBUSIEEEMR ( ChinaCover2010 )
The China National Land Cover Data for 2010 (ChinaCover2010)

2010 S E T EERERETUEIESE ( ChinaCover2010 ) HFERFRIEMSHFHIRMRAAKSEM 9 AN HEREAE , RA 30 m 25
SHRNTEE (H)-1A/1B ) 48 , FARSERKRES (FAO) NLCCSHE TR, MBTIERTPEERREN 38 - EW SRR, F
BEFBEFANEETLE. ERNRNBmSE. WEEASEHSHN 10 A MNFINFELURBASIERE S38EaI5E | 8UENEIAT 85%.
ChinaCover2010 EEE‘FE?‘EEB?& ﬁﬂﬁ%ﬁm & . FEEMERI M LR PSR RIS HIERATE R RIE 78RR | rlhs
E&EAINET AL SR ARG EREHRSTH. ( Rkt : http://www.chinacover.org.cn)

The China National Land Cover Data for 2010 (ChinaCover2010) has been completed after two years of team effort by the Institute of
Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), together with nine other institutions’ participation. The HJ-
1A/1B satellite at 30 m resolution is main data source. Based on the landscape features in China, 38 land cover classes have been defined
using UN FAO Land Cover Classification System (LCCS). Super computers were used in the data preprocessing. An object-oriented method
and a thorough field survey (about 100000 field samples) were used in the land cover classification, with radar imagery as auxiliary data.
The overall accuracy of ChinaCover2010 is around 85%. Mainly based on domestic imagery, the products take advantage of various in situ
data and strict quality control. ChinaCover2010 is a good dataset for ecological environment change assessment and terrestrial carbon
budget studies. (Website: http://www.chinacover.org.cn)
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