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Mapping rice yield based on assimilation of
ASAR data with rice growth model
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Abstract: In this paper, a practical scheme for assimilation of multi-temporal and multi-polarization ENVISAT ASAR
data in rice crop model to map rice yield is presented. To achieve this, rice distribution information is obtained first by
rice mapping method to retrieve rice fields from ASAR images, and then an assimilation method is applied to use the
temporal single-polarized rice backscattering coefficients which are grouped for each rice pixel to re-initialize
ORYZA2000. The assimilation method consists of re-initializing the model with optimal input parameters allows a better
temporal agreement between the rice backscattering coefficients retrieved from ASAR data and the ones simulated by a
coupled model, i.e., the combination of ORYZA2000 and a semi-empirical rice backscatter model through LAI. The
SCE-UA optimization algorithm is employed to determine the optimal set of input parameters. After the re-initialization,
rice yield for each rice pixel is calculated, and the yield map over the area of interest is finally produced. The scheme is
applied over Xinghua study area located in the middle of Jiangsu Province of China during the 2006 rice season. The
result shows that the obtained rice yield map generally overestimates the actual rice production by 13% , with a relative
error of 11.2% at validation sites, but the tendency of rice growth status and spatial variation of the rice yield are well
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predicted and highly consistent with the actual production variation.
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1 INTRODUCTION

Rice is a staple food crop in China and its annual yield
accounts for half of the country’s total crop production ( Yu
et al., 1980), showing its importance in keeping China’s
fast development. Since remote sensing technique has
improved in decades, quick and continuous monitoring of
agricultural crops can be done through satellites. However,
more than 90% of rice is planted in southern China where
always retains plentiful rainfall and dense cloud cover
during the rice season (Yu et al., 1980). Therefore, rice
crop monitoring entails the use of microwave remote
sensing, since microwave can penetrate through clouds and
has all-weather capabilities.

Since the launch of ENVISAT satellite which carries a
powerful Advanced Synthetic Aperture Radar ( ASAR) ,
a large amount of radar data have been obtained to serve
both scientific and application-oriented users. ASAR
operates at C-band frequency of 5.3 GHz and can
provide radar product in five working modes, among
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which Alternative Polarization Mode ( APMode )
contains two simultaneous images from the same area in
HH and VV polarizations, HH and HV, or VV and VH,
with the same imaging geometry. In crop monitoring,
the effectivity and reliability of ASAR APMode product
have been confirmed by many researches ( Dente ef al.,
2007 ; Mattia et al., 2003; Stankiewics, 2006 ). For
rice, most of the reports are focused on rice mapping
(Chen et al., 2007; Tan et al., 2006; Yang et al.,
2008a) , rice parameters retrieval ( Yang et al., 2008a)
and rice backscattering mechanism ( Dong ef al., 2006) .
However, the potential of ASAR data in rice yield
estimation has not been fully investigated.

During the last decade, methods of integrating remote
sensing data into crop models for crop production
forecast have been widely used and promoted, which not
only solved the technical issue in parameterization for
regional crop models application, but also improved the
accuracy of regional crop yield estimation ( Moulin
et al., 1998 ; Zhao et al., 2005). There are two main
methods: one is the ‘driving’ method; the other is the
assimilation method. The assimilation method is used to

Foundation ; Jiangsu Graduate in Scientific Research and Innovation ( No. CX07B_048z), and the Special Program for Scientific Research in

Public Welfare Meteorological Services (No. GYHY200806008 ) .

First author biography:YANG Shen-bin (1981— ), male, Ph. D in agricultural remote sensing, and a lecturer of Nanjing University of

Information Science & Technology, has published 6 papers.



YANG Shen-bin et al. : Mapping rice yield based on assimilation of ASAR data with rice growth model 283

optimize a crop model by minimizing the difference
between the radiometric signal and its simulation by the
re-parameterization and/or re-initialization of the crop
Ma et al. (2005) showed the
accuracy was improved by applying this method to

production model.

simulate the growth status of winter wheat in the east of
China. Yan ef al. (2006) adopted this method to assess
the influence of different assimilation data source to the
simulation results.

In this paper, a practical scheme for mapping rice
yield based on multi-temporal and multi-polarization
ASAR data is presented,
method has been adopted, and validated using the data

in which the assimilation

acquired in 2006 over the Xinghua study area located in
the middle of Jiangsu Province of China.

2 EXPERIMENTS AND DATA

2.1 Study Area and Experiments

The study area is an agricultural area of 90 km’
located in the middle of Jiangsu Province of China,
approximately 32° 51’ N—32°58' N and 120° 00" E—
120°06"E. The landscape is flat with intensive water
network and fertile soil belonging to the Lixiahe grain-
producing area of Jiangsu Province. The crop system
here is a two-crop rotation system, with wheat in winter
and rice in summer. During the rice season, more than
95% of rice is direct-seeded. The dominant rice species
is japonica rice with a life span of about 135 days. Other
crops include bean, cotton, corn and vegetables.

In 2006, four rice growth monitoring plots A, B, C
and D with size of about 10 ha each were established, and
ground truth data were collected from the plots at 10-day
interval from June 25" to October 20".

between each two plots ranges from 0.3 km to 3 km.

The distance

Within each plot, 5 fixed observation sites with area of 1
m® each were monitored for rice growth stages, plant
density, plant height and general information about field
management. The above ground biomass were measured
separately for stems, ears green and dead leaves, by
collecting 25 samples randomly within each plot and
weighing them before and after drying at 80°C for 48 h.

LAI was measured by a direct method. During the rice
harvest, detailed information on actual rice production
was collected within the study area for validation.
Meanwhile, boundaries of the monitoring plots and other
land surface objects were recorded using DGPS devices.
Soil surface profile of 1 m length was also measured in
both vertical and horizontal directions. In addition, daily
meteorological data  were obtained from  local
meteorological bureau, including maximum and minimum
temperature, vapor pressure, mean wind speed, rainfall
the basic

information on average rice growth conditions of each

and sunshine duration. Table 1 provides

monitoring plot.

Table 1 Information on average rice growth condition

Plot Plant density Date of rice Date of rice Final yield
(plant/m*) seeding heading (kg/ha)
A 215 June 10, 2006 August 28, 2006 9370
294 June 11, 2006 August 29, 2006 10380
C 233 June 11, 2006  September 1, 2006 9379
D 240 June 12, 2006  September 1, 2006 9068

2.2 ASAR Data

During the rice season of 2006, four ASAR APMode
products were acquired over the study area ( Table 2).
The calibration was carried out using the BEST software
provided by European Space Agency (ESA) to extract
backscattering coefficients. In order to reduce the speckle
noise, two SAR image filters, the multi-channel filter
( Quegan and Yu, 2001; Yang efal., 2006 ) and
GAMMA MAP filter 1987 ),
successively to calibrated

( Kuan er al., were

performed the previously
images. With the data set, the resulting filtered images
reached an ENL (i.e. equivalent number of look) of 64.
Images were geo-referenced in ENVI software using a
scene of geo-corrected ETM image with a root mean
square error of the control points of about 22 m.

Finally, backscattering coefficients of different crops
and other land surface objects were extracted and spatially
averaged over the obtained sample files for HH and VV

polarizations respectively.

Table 2 Overview of the acquired ASAR data and the phenological stage of rice at each of the acquisition date
Acquisition Polarization Orbit Spatial resolution Incidence angle Rice phenological stage
06/30,/2006 HH/VV Descending 30 m 19.2°—26.7° Tillering stage
08/04,/2006 HH/VV Descending 30 m 19.2°—26.7° Jointing stage
08/19/2006 HH/VV Ascending 30 m 19.2°—26.7° Booting stage
09/23/2006 HH/VV Ascending 30 m 19.2°—26.7° Grain filling stage
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3 SCHEME FOR MAPPING RICE YIELD BASED
ON ASAR DATA

Shao et al.
yield estimation based on multi-temporal radar data. The

(2001 ) put forward a scenario for rice

plot requires many supporting data, such as DEM, soil
map, crop data; and techniques, such as GIS, image
classification and rice modeling that complicates the
the
purpose. Therefore, this paper presents a simplified and

implementation of whole scheme for practical
practical rice yield mapping scheme based on ASAR data
(Fig. 1). It consists of two parts for realizing the whole
process. In the first part, ASAR data is combined with
rice mapping method to obtain the rice distribution map
over the area of interest. The rice map is used to mask all
the ASAR images to select only rice fields and retrieve
rice backscattering coefficients. It should be noted that the
accuracy of rice yield estimation is somehow influenced
by the rice mapping accuracy. Therefore, multi-temporal
and multi-polarization radar data are recommended for
rice mapping, because rice mapping accuracy higher than
80% has been reported in several studies with the thre-

shold of supervised classification method ( Yang et al.,

Multi-temporal,
multi-polarization ASAR data

2008a, 2008b; Zhang et al., 2006 ). The second part in
this scheme is mainly shown in the dashed box in Fig.
1, where an assimilation method is adopted to calculate
the rice yield for each rice pixel. The assimilation
method is the direct use of observed rice backscattering
coefficients to re-initialize the rice growth model
ORYZA2000. ORYZA2000 is coupled with a semi-
empirical rice backscatter model using LAI as an
essential link to simulate rice backscattering coefficients.
The assimilation method re-initializes the ORYZA2000
model with optimal input parameters allowing a better
temporal agreement between the rice backscattering
coefficients simulated and those observed. The global
optimization algorithm SCE-UA is applied to determine
the optimal set of input parameters. After the re-
initialization, rice yield corresponding to each rice pixel
is calculated by ORYZA2000, and finally, the rice yield
map of the area of interest is produced.

The rice map of the study area was retrieved from our
previous study ( Yang et al., 2008a) with mapping
accuracy of 84.36% , which indicates that the rice map
can be employed in this study directly. Therefore, only
models and optimization algorithm are described in

details in the next part.

Pixel group of temporal
single-polarized ¢

o
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Rice map
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Fig. 1 Scheme for mapping rice yield based on ASAR data

4 MODELS AND ALGORITHM

4.1 ORYZA2000

ORYZA2000 is a dynamic, eco-physiological rice
crop model to simulate the growth, development and
water balance of lowland rice in situations of potential
production, water limitations and nitrogen limitations
(Bouman et al., 2001 ; Xue et al., 2005). To simulate
situations, modules are

all these production several

combined, such as modules for aboveground crop

growth, evapo-transpiration, nitrogen dynamics, and
soil-water balance, in which large number of model
parameters and specific in-situ data (i.e. weather data,
field management data and soil data) are required to run
the model successfully. A large number of parameters
are contained in ORYZA2000, but most of them are
universal (i. e. not sensitive to rice species); only
parameters accounting for rice development, biomass
distribution and photosynthetic ratio need to be calibrated
corresponding to different rice species.

In this study, rice growth is assumed in the situation

of potential production, for which rice grows with ample
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supply of water and nutrients and the growth rates are
determined by rice physiological characteristics and
weather conditions. In order to obtain accurate
predictions for the growth of japonica rice under
consideration, the calibration of ORYZA2000 should be
carried out to estimate the variety-specific parameters
which consist of development rate, partitioning factors,
relative leaf growth rate, specific leaf area, leaf death
rate and fraction of stem reserves. Two programs
DRATES and PARAM provided by ORYZA2000 are
performed for the calibration using the experimental data
collected over the plots A and B. The experimental data
of the plots C and D are kept for the validation. After
the calibration, the result showed that the average
difference between the simulated and observed rice
development stages was less than one day, and the final
yield was predicted with a simulation error less than
18% . The correlation coefficient of simulated and
measured LAI reaches 96% .

uncertainties of calibration process caused by the ground

Taking into account the

measurement errors, the calibration results can be
considered acceptable in the context of a crop growth
model.

Even though the genotype parameters are identified
during the calibration procedure, the ORYZA2000 model
still needs a large number of input parameters. Among
them, some parameters can vary greatly over the study
area and are rarely available through field measurements.
Therefore, a sensitivity analysis is carried out to
determine whether or not there exists a relatively small
subset of model inputs affecting, more than others, the
temporal behavior of the state variables of interest for the
assimilation. The result shows that the predicted rice
yield and LAI are mainly sensitive to the changes of
emergence date (EMD) and plant density ( NPLDS).
While the emergence date delays or advances for 10
days, the simulated flowering date would vary 8—10
days and the average variation in simulated rice yield
reach 5.3% and 4. 8% for simulated maximum LAI
Since rice is direct-seeded, the difference between plant
densities from fields to fields reaches more than 22% on
average and 69% to the maximum, showing that the
plant density varies remarkably over the study area. It
shows that while the plant density increases 100 plant/
m’, there would be an average change of 4. 6% in
simulated rice yield and 10% in simulated maximum
LAI. Therefore, rice emergence date and plant density
constitute the set of model inputs which are involved in

the assimilation and re-initialization process.
4.2 Cloud

Attema and Ulaby (1978 ) presented a semi-empirical

radar model to simulate the volume scattering for
vegetation. It assumes that vegetation consists of a
collection of water droplets, which are represented as
small identical particles, if the volume scattering is the
predominant mechanism responsible for the backscatter
from canopy. The simple model can be expressed as the
first order solution of the radiative transfer equations
(1)—(3) to compute the backscattering coefficient o°

for the vegetation

o"’:o-"\,eg+k2 0% (1)
0°,, =a - cosf (1-K) (2)
K =exp( -2 -+ W- h/cosh) (3)

o

where  o°,, = backscattering coefficient for vegetation
canopy/ (m’/m*)

o°.., = backscattering coefficient for soil/ (m*/m®)

k* = two-way attenuation through the canopy

« = backscattering coefficient at full closure of the
canopy/(m’/m?)

B = coefficient of attenuation per unit of canopy water/
(m’/kg)

6 = incident angle of radar beam/(°)

W =amount of canopy water unit volume/(kg/m’)

h = canopy height/m

The simple model was applied successfully for a
range of crop types (e. g. winter wheat, bean) and
conditions ( Wigneron ef al., 1999; Bouman et al.,
1999 ; Graham & Harris, 2002 ). For paddy rice, we
simply assume the scattering from the paddy background
(water surface) is constant before the ripening stage and
the temporal variation of rice backscatter is mainly
attributed to the change of canopy size (e. g., stem
height, leaf size ), canopy water content and canopy
biomass. The same assumption was also made by Inoue
et al. (2002) to analyze the interaction between rice
backscattering coefficients and plant variables.

In order to link the simple model with ORYZA2000
by the LAI, regression analysis is applied to investigate
the relationship between W - h and LAI, in which the
W - h represents the canopy water content per unit soil
surface (kg/m’). As a result, a significant relationship
is found as the following rational equation:

a-W-h+b
LAT =~ —s 8 (4)
where a, b and c are coefficients equalling 0. 19, 0. 1534
and 1.511 respectively.

Fig. 2 shows the obtained best fit curve with
goodness-of-fit statistics. The high fitting level implies
that the LAI can be substituted for the W - h in the
simple model to simulate rice backscatter. Finally, the
Cloud model for the rice paddy can be expressed ( in
dB) as follows:
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o° =10log,,[a - cosh - (1 =k*) +k* - ¢°,,] (5)

K =exp{ =2 -B-(b-c-LAI)/[(LAl-a) - cosf] |

(6)

o°,, = constant backscattering from canopy
background/(m’/m*)

Here, three parameters «, B and ¢°,, should be

where

estimated by fitting the model to the observed rice
backscatter data. In this paper, the global optimization
method SCE-UA is applied to estimate the optimal values
of the three parameters, and tested for HH and VV
polarization separately. The brief description of SCE-UA
method and optimization configurations can be found in
the next part. Table 3 provides the results in terms of «
(in dB), B and ¢°,, (in dB) with some statistics,
which indicate the Cloud model calibrated in HH
polarization has a better performance in simulating the
rice backscattering coefficients.

9~
o0
8k
7 -
6 3
5
E
= 5F Fitness function:
o J(x)=(a*x+b)/(x+c)
,g 4 Coefficients:
8 a=0.1900
3 b=0.1534
c=1.5110

Goodness of fit:
R-square:0.968
RMSE 0.5584

0 1 2 3 4 5
W-h(kg/m?)

Fig. 2 Regression and curve fitting analysis between
W - h and LAI with statistical results

Table 3 Optimal values of parameter &, 8 and o°
with statistical results for HH and VYV respectively

Polarization «/dB B/m?/kg o/ dB Plot R RMSE
A 0.9775 0.8733
B 0.9576 1.1560
HH ~5.2982 5.8091 —118. 4061
C 0.9658 1.0448
D 0.9923 0.7229
A 0.4071 1.0531
B -0.9314 0.9925
VvV ~150.7583 0. 0444 -7.9250
C 0. 8664 0.7886
D 0.9894 1.0551

4.3 SCE-UA Algorithm

The global optimization algorithm SCE-UA ( Shuffled
Complex Evolution) is developed by Duan in 1993 ( Duan
et al., 1993 ). It is not problem specific and is easy to
handle, which has been widely used in various fields for
nonlinear optimization problems and reported exact results
(Duan et al., 1994; Li et al., 2004 ). The SCE-UA
algorithm contains many parameters that control the
probabilistic and deterministic components of the method.
Here, we only present the optimization configuration for the

model input parameters of the rice backscatter model and
ORYZA2000, with the system settings of the SCE-UA
method for each of them (see Table 4 and 5). Least-square
function is used as the objective function. The optimization
process is terminated if one of the following criteria is
satisfied; (1) the algorithm is unable to improve 0. 0001
percent for the value of the objective function over five
iterations; (2 ) the algorithm is unable to change the
parameter values and simultaneously improve the function
value over five iterations; (3) the maximum number of
iterations (10000) is exceeded.

Table 4 Initial values and sample intervals of model input parameters for rice radar model and coupled model

Rice backscatter model ORYZA2000
Configuration
a/(m*/m”) B/ (mz/kg) o/ ( m’/m”) EMD /d NPLDS/ (planls/m2 )
Initial value 0.143 8.2 0.083 166 230
Sample interval 0, 1) (0,10) (0, 1) [145, 175 [100, 300 ]
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Table 5 System settings of SCE-UA for rice radar model and coupled model

Number of points Number of Minimum number

Number of Number of points .
Models \ X . Trials
Complexes in each complex in a sub-complex evolution steps of complexes
Cloud 4 7 4 7 3 10
ORYZA2000 3 5 3 5 2 10
process, the optimization stopped successfully in criteria
5 RESULTS (1), and recorded the optimal values of EMD and NPLDS
for further analysis. In order to map the rice yield of the

tud the whol ts about five d t

The assimilation was carried out for a total of 31388 sy area,. ¢ Whole process COSS. about Hive qays to

. . . . . complete using a desktop computer with CPU of 1. 5GHz.
pixels to calculate the regional rice yield. During the

100 300/(plant/m?) 9000 11200/(kg/ha)

Fig. 3 Maps of (a) rice emergence date, (b) rice plant density and (c) final production

%1073
04T Mean:167.22 @ g [Mean:212.66 M o,
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03k Pixel:31338 . _anel:31338 b "0 i ]
2 2
g 02f Z 4 1
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0.1F H 2
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0.1F Mean:104.22 [ e Ok
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Rice Yield/(10°kg/ha)

Fig. 4 Density of pixel values for maps of (a)rice emergence date, (b) rice plant density and (c) final production
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Fig. 3 shows the obtained distribution maps of EMD
and NPLDS and the estimated rice yield with spatial
resolution of 30 m. For each map, different colors are
assigned to the pixels according to their values. The
probability density plots of the retrieved maps were also
displayed in Fig. 4. It shows that the optimal parameters
vary mainly in the following ranges: the EMD between
160d and 175d, and the NPLDS between 150 and 300
plant/m®. According to our field survey, the variation of
the estimated EMD and NPLDS is realistic for the study
area, except that the average NPLDS is slightly
underestimated by 30 plant/m’. The rice yield in Fig. 3
(c¢) varies between 9000 and 11200 kg/ha. The mean
estimated is about 10422 kg/ha, higher than the average
observed about 1200 kg/ha (i.e. approximately 13% ).

For a quantitative evaluation of the reliability of the
produced rice yield map, it was compared to the in-situ
data collected over the 10 monitored fields. As shown in
Fig. 5, it was found that the estimated rice yield is
generally higher than the observed with a root mean
square error of approximately 1133 kg/ha and a relative
error of 11.2% . A high difference of about 2000 kg/ha
between the estimated and observed was found in the
monitored field 6 and 7 where rice was grown under
unfavorable conditions. The overestimation of the rice
yield was due to the simulation under the condition of

potential production used in this study.

150
:IMeasured

= |:|Estimated
< N _
g) 100 | | = 1
2
=]
2
>~
3 50 |
-4

0

1 2 3 4 5 6 7 8 9 10
Monitored Field

Fig. 5 Comparison between measured and simulated rice yield

In fact, although the condition of rice growth in the study
area is favorable with abundant water and active field
management, rice disease and pests (e. g. rice planthopper)
are still severe during the rice growth period of 2006, which
causes the universal reduction of the rice yield. However, the
tendency of rice growth status and final yield are well
predicted. According to the field survey during the rice
harvest, the predicted spatial variation of the rice yield is
highly consistent with the actual rice production situation.

6 CONCLUSION AND DISCUSSION

In this study, a practical scheme for mapping rice yield

based on multi-temporal and multi-polarization ASAR data is
presented. It consists of two parts: one is rice mapping, and
the other is rice yield estimation using assimilation method.
The scheme is applied over Xinghua study area of China and
validated with experimental data collected in 2006. Rice map
was produced in a previous study by ASAR data. The
mapping accuracy reached 84.36% . ORYZA2000 is calibrated
using the field measurements to obtain the variety-specific
parameters. The sensitivity analysis is carried out
subsequently to identify the most suitable model inputs to be
involved in the re-initialization, i. e. the parameters which
mainly affect LAl and final yield predictions. The results
shows that LAI and final yield are mainly sensitive to the rice
emergence date and rice plant density. The semi-empirical
rice backscatter model is calibrated to simulate the HH-
polarized rice backscattering coefficients instead of the VV-
polarized ones.

The ORYZA2000 model predicts a rice yield map with a
spatial resolution of 30 m. The result shows that the obtained
rice yield map generally overestimates the actual rice
production by 13% , with a relative error of 11. 2% on
validation sites. This is due to the potential rice growth
conditions assumed. But the tendency of rice growth status
and final yield are well predicted and the spatial variation of
the rice yield is highly consistent with the actual rice
production situation.

In conclusion, the scheme described in this study is a
promising technique to apply on multi-temporal and multi-
polarization radar data and rice crop models for regional rice
production estimation, when no accurate in-situ information
is available and/or optical data are hampered by heavy clouds
during the rice season. However, further validation of the
presented scheme at different rice planting areas and with
different radar configurations ( e. g. incidence angle,
polarization) is needed, with the suggestions to improve the
effectiveness of the proposed scheme:

(1) Considering the influence of actual unfavorable
conditions, like water limit, nutrient limit and insect pest to
rice growth simulation.

(2) Improve the Cloud model for rice paddy,
especially considering the contribution of water surface
during early rice season to rice backscatter ( Le Toan
et al., 1997; Koay et al., 2007 ).

(3 ) Increase the optimization threshold of SCE-UA
algorithm to 0.0001% , in order to avoid the insensitivity of
the Cloud model to LAIL
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