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Abstract .

Small footprint airborne LIDAR systems now possesses the capability to sample the whole returned

waveform rather than to extract discrete 3D coordinate values ( discrete point cloud) , thanks to the improvement of data

storage hardware and data processing speed. One merit to analyze waveform data is that the end-user can extract point

cloud by him/herself from the raw waveform data in the post processing, instead of being provided by the LIDAR

system. The first step to analyze waveform data is to decompose the waveform into individual components. Conventional

methods for waveform decomposition are usually polynomial fitting by non-linear least square algorithm, or simply

thresholding with the threshold value provided by system vendor. Literature has pointed out that it is impossible to get

higher accurate decomposition results by such conventional methods. The paper modifies the Expectation Maximum

(EM) algorithm in the context of laser scanning waveform decomposition. Experiments with data from both airborne and

space borne LIDAR systems show the high reliability and accuracy of the proposed method for waveform decomposition.
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1 INTRODUCTION

Airborne Light Detection and Ranging ( LIDAR)
technique has been witnessed widely applied for rapid 3D
mapping in the past decade. Though the essential of
LIDAR is similar to that of laser ranging technology, the
integrated LIDAR with  Positioning and
Orientation System (POS) and CCD camera ( with 20—
40 million pixels) makes it irreplaceable for mapping in

system

areas such as heavily vegetation covered area, coastal
zones, beaches and islands, efc., where it is very
difficult for mapping by conventional photogrammetric
means. Airborne LIDAR as a new type of remote
sensing sensor is becoming familiar to surveying and
mapping community ( Ackmann, 1999; Baltsavias,
1999 ; Gamba & Housh mand, 2000 ).

Airborne LIDAR system could date back to 1980°s
when some experimental systems emerged. It was
matured in the mid to late 1990°s. The earlier generation
of LIDAR systems records single echo, i.e., the first
echo is recorded and only the Digital Surface Model
(DSM) over the surveyed area can be obtained. In the
later commercially available systems, both first and last
echoes could be recorded, which can be input to specific

algorithms to remove non-ground points so as to establish
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the Digital Terrain Model ( DTM ) over the surveyed
area. Though such a simple working flow seems to be out
of any problem, it is impossible for the user to get any
equipment-related information, such as: how to geo-locate
the echo pulse? How does the ground objects influence the
shape and amplitude of the return signal? How are the
return signals quantified? The detection techniques and
quantification methods for echo pulses are usually kept as
commercial secrets by system vendors. Literature pointed
out that the final achievements should be error prone if
different detection techniques and quantification methods
are employed ( Wehr & Lohr, 1999).

One solution for the above mentioned problem is to
sample and record the transmitted and returned signals at
an infinitesimal interval, rather than to record several
discrete returns only. Such a sampling and recording
manner is defined as full waveform digitizing, and the
system possessing such a capability is referred to as full
waveform digitizing LIDAR. Users know why and how
the discrete echoes are generated by analyzing the
waveform data, and application-oriented methods can be
employed to process these data.

As a matter of fact, airborne LIDAR systems were
developed by NASA and characterized by full waveform
digitizing capability as early as 1990’s, such as SLICER
(Scanning Lidar Imager of Canopies by Echo Recover) and
LVIS ( Laser Vegetation Imaging Sensor). Some space-
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borne LIDAR systems such as GLAS also possess full
waveform digitizing capability. However, none of them is
for commercial purpose. The technology was firstly adopted
by RIEGL in 2004 for its commercial system. Though only
a few years later, most of mature LIDAR systems available
in the current market have integrated full waveform digitizer
as a standard configuration component, such as Falcon III
by Toposys, ALS50-II by Leica Geosystem and ALTM
3100EA by Optech.

Study on waveform data analysis and processing is
relatively behind the development of full waveform digitizer
hardware. This due partially to the fact that the application
and analysis of waveform data are still limited to research
community, seldom is used in engineering projects.
Furthermore, methodology for waveform data analysis is
the lack of

generalized methods and algorithms to process these data.

usually application-oriented, leading to

The paper discusses one of the key steps of waveform
A modified
Expectation Maximum ( EM) algorithm is applied, using

data analysis; waveform decomposition.
the publicly accessed waveform data provided by NASA
SLICER and RIEGL as the experimental data sets.

2 THE GENERATION AND DECOMPOSITION
OF WAVEFORM DATA

Though there is a technical term “ full waveform” ,
we should pay much attention to that the waveform
mentioned in airborne LIDAR technology is not actually
the
infinitesimal time interval sampling of the returned echo

a mathematically smooth curve. It is in fact
makes the recorded data seem to be a continuous curve if
they are plotted in a planar coordinate system spanned by
time and amplitude as xy-axes. We firstly investigate the
generation of waveform which is closely related to the
latter decomposition. This should start with introducing
The the

transmitted and the received power can be formulated as

the radar equation. relationship between
equation (1), according to the derivation suggested by

Wagner et al. (2006)

N 2

P (1) = zmam*o;(t)*r(z) (1)

i=1

where N denotes the object number encountered by the laser
pulse in the trip it traverses forth and back, under the
condition that the range the pulse visited is larger than the
minimum distance the system required, the so called range
resolution. Only if the distance separated by two objects
along the laser pulse’s forward and back path is larger than
the range resolution, could the two objects be distinguished.
P (1) denotes the transmitting power, P, (t) the receiving
power, D the aperture diameter of the receiver optics, R, the

range between laser transmitter and object i, B3, is the

i

transmitter beamwith a-; (t) the differential backscatter
cross-section which is defined as the backscatter cross-section

within a infinitesimal range interval dR, and ¢ the time
variable. Since range R and time ¢ is related by # =2R,/v,,
where v is the of light, they are
interchangeably in the LIDAR community. [I° (#) is the

velocity used
receiver impulse function, and” denotes the convolution
operator. Waveform data are recorded by sampling the return
signal with predefined interval. Since sampling frequency
satisfies the Nyquest theorem, the sampled data can be
restored. Fig. 1 illustrates the basic idea of generating
waveform and discrete point data.

. Echo
Discrete waveform
Returns Amplitude
?‘ outgoing pulse
return signal
Ist return Ist level
(canopy)
canopy
structures
2nd return 2nd level(bushes)
ground
last return
time time
Fig.1 Full waveform data and discrete echo. (Optech, 2006)

In practice, P,(¢t) and I' (t) cannot be -easily
determined independently. Therefore it is advantageous
to rewrite the convolution term by making use of the
commutative property of the convolution operator:
P (1) "I (1) o, (1) , where we introduce the system
waveform S (¢) of the laser scanner, defined as the
convolution of the transmitted pulse and the receiver
response function. It can be measured experimentally
and is shown in Fig. 2 for the RIEGL LMS-Q560. It can
be seen that it is well described by a Gaussian function:

il
=
2575

S(t) =S8 e where § is the amplitude and s, the

standard deviation.

E 1y

S

2 08 L

z 0.

=

g 0.6 f

;)’

w04}

(=3

3

o 02+t

%)

2 0 1 1

- 10 20 30 40 50
Time/ns

Fig.2 System waveform of RIEGL LMS-5600

In radar remote sensing theory, it is assumed that the
scattering properties of a cluster of scatterers can be

(-1,
252

described by a Gaussian function o (1) = g.e
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where ¢, is the amplitude and s, the standard deviation
of the cluster i. Since the convolution of two Gaussian

curves gives again a Gaussian function, so that we
(t—t,)2
252

obtain; P, (1) = z Pe e

=1
2 2 ~
s+ Siup,

D .
return waveform is actually superimposed by several

where s, =

A ST . , which shows that the
" 4nR B,

Gaussian functions. If we try to decompose the return
waveform into individual Gaussian function and estimate
its parameters such as amplitude, mean value and
standard deviation, then it does not only provide
preprocessed data for later processing, but also can

estimate the backscatter cross-section of the pulsed area.

3  ALGORITHM FOR WAVEFORM DECOMP-
OSITION

Since the return wave can be described as the
superimposition of several Gaussian functions, it is of
great value to estimate parameters of them. The
amplitude, the position of wave peak, the width of the
wave and the distance between two continuous wave
peaks, among many others, are parameters of most
importance. It is mainly dependent on the determination
of individual waveform to estimate these parameters;
therefore it is one of significant steps for waveform
decomposition in analyzing waveform data.

Wagner et al. (2006) and Hoton et al. (2000) have
already developed Gaussian function based waveform
decomposition algorithms, where the Gaussian function
was only regarded as an aim function to which the
waveform data were fitted by using non-linear least
square method. Some constraint conditions should be
given upon their algorithms and the solution tended to be
local optimal. From the other point of view, however,
the problem of waveform decomposition is actually a
problem of decomposition for mixture Gaussian
distribution since the waveform can be described as the
superimposition  of  several Gaussian  functions.
Decomposing mixture Gaussian distribution is a problem
often occurred in fields such as pattern recognition and
statistical inference the Expectation Maximum ( EM )
in 1977 can

perform parameter estimation for Gaussian mixture

algorithm developed by Dempster, etc.

distribution ( Dempster et al., 1977). An overview of the
algorithm is given in the following while detailed
description deserves to be referenced by Olive et al.
(1996).

The original formula for estimating p,,u; and o; by

EM is as listed below :

S (2)

Z p,f(x,)

G (3)
> 0,
W= (4)
Z Q; (i —p)
o = [— (5)
p, Xn

Suppose that the waveform is superimposed by individual

Gaussian  distributions,  then the result mixed

distribution, that is, the small-time-interval sampled

data, can be formulated as:
k

fx) = 3 p x ()

f,(x) e N(p;,07)
k denotes the number of Gaussian distributions taking
part in the superimposition; f, (x) is the Gaussian
probability density function; p, is the weight of f, (x)
describing the percentage of the j" component occurred

in the mixture distribution, and satisfies: 0 < p, < 1,
k

z p; = l; u; and o, are the mean value and standard

dev1at10n of Gaussian distribution respectively. For each
component j, the estimated u, gives the position of the
return wave in the abscissa, while o, represents the width
of the wave. All the parameters p,, u;, and, o, can be
estimated by EM algorithm. When applied in practice,
however, data preprocessing should be carried out and
initial parameter values for formula (2)—(5) should be
given. The initial values are usually predicted from raw
data, and then the constructed f(x) is used to calculate
Q,. Though such a workflow is feasible, it will not get a
satisfactory outcome if formula (2)—(5) are adopted
directly without considering the amplitude of the
waveform. A modified EM algorithm is derived if
amplitude N, is taken into consideration. Details of
derivation are given in the following .
Substituting (3) into formula (4)—(5), it reads:

et % DO Qi
M = ;]xp‘ L - = L:,,I (6)
X Oxn 30,

i=1 i=1

2 Q,(i-p)’

Y 0, xn
i=1

Z Q,(i-p)’

nxp,
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(7)

where the amplitude N, is added to nominator and
denominator simultaneously. N, is equivalent to a weight

constraining p,, u; and o,.

n

o= (8)
3, Ve,
Z Ninj(i _/ij)2
o, = | (9)

J n

2 e,

i=1

If formula (8 ) and (9 ) are restored to the form
coinciding with EM algorithm, then.

D)
N p /(i)

j=1

> N,

p = ———— (11)

(10)

=0

Y NQi

= (12)
noxp, x ZNi

i=1

> ONQ; (i-p)’
o = | (13)

J n

nXp/XZN,.

i=1

where n denotes the number of points for sampling raw
waveform data, and N, the sampling interval of the i"
sample. Since the initial values of p,, u, and o, are
usually suboptimal, iteration is carried out using formula
(10)—(13) to obtain the optimal values by adjusting
these parameters with amplitude.

The difference between two consecutive mean values
can be calculated after the optimal y; is estimated by EM
algorithm. An additional y,,, can be inserted between the
two consecutive mean values if the difference exceeds a
given threshold in order to decompose as many individual
Gaussian functions as possible, and then re-iterate (10)—
(13). Otherwise, if there is no more individual Gaussian
functions can be decomposed, the iteration is ended and
the final result is obtained. Fig.3 illustrates the flow chart
of decomposition EM algorithm. Point cloud can be
generated directly via the process if raw waveform data
are imported. Theoretically, accuracy of point clouds
obtained by the method of waveform decomposition is
higher than that generated by LIDAR system itself.

Denoising

Y

Smoothing

1

Gradient operating

1

Estimating the j" initial value of x

1

Checking the maximun number of consecutive nonzero samples [~#—

1

Inserting . between consecutive nonzero samples

1

Interating (10)[1(13)
Obtain yt,---,,,

Y

If /Jj+1—/1/.>thrcshold T

{

Obtain final results of,ulmu/.,aI "o,

Fig.3 Flow chart of waveform decomposition
by EM algorithm

4 EXPERIMENTS AND DISCUSSION

4.1 SLICER

The waveform data used in our first experiment was
acquired by SLICER over a vegetation area and stored in
a binary format file with suffix. dat. Each returned signal
is sampled with an interval of 0.1112 me and there are
totally 600 sampling points. The inclination angle and
azimuth of the transmitted pulse, Lat/Lon and elevation
of the highest surface detected are also contained in the
data.
4.1.1

Fig.4 shows the raw waveform data, where the abscissa

Pre-processing of the raw data
represents the time interval ( bearing in mind the
interchangeability of time and range) for sampling while the
ordinate the amplitude of the return signal. Noises from
many sources contaminate the sampled data, leading the
sampled curve to a jittered one where the jittered parts with
small amplitudes illustrating noises. These noises should be
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removed before the EM algorithm is applied. Cutting 5% of
the waveform tail off since the tail jitters around a small
value, and then calculates the mean value from it as
threshold o
threshold o
result of waveform after smoothing.

All samples with amplitude less than

noise *

are set to zero. Fig. 5 illustrates the final

noise

Amplitude

L h L Lo}
0 100 200 300 400 500 Time/ns

Fig.4 Raw waveform data acquired by SLICER
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100

Amplitude

L LI N DA ]

1 L L 1

0 100 200 300 400 500 Time/ns

Fig.5 Pre-processed waveform of Fig. 4

4.1.2 Parameter initialization

The initial values of y;, p; and o, can be given randomly
in principle when the EM algorithm is carried out, though a
better prediction for these values will greatly improve the
calculating speed. The initial value of u,; can be determined
by local maximum since it is obvious that the local
maximum would be a candidate for optimal u,;, so the first
derivative of the waveform is calculated, as shown in
Fig.6. The initial values of p, are set so that each
component has an equal weight and o, is set as 7 in this
experiment. Fig. 7 illustrates the pre-processed waveform
(solid curve) and its initial curve (dashed curve).

200
100
0 A:

-100

200 i . .
0 100 200 300 400

500 Time/ns

Fig.6 First derivative of waveform

200 F
150 :— Pre-processed
3 - waveform
= C
£ 100 .
|, u Initial cune
g C
50
0 - /; -:)E': |-"v‘: -"\ 1
0 100 200 Time/ns

Fig.7 Waveform with initial values estimated

Fig. 8 shows the Waveform ( solid) with three
Gausssian components ( dashed ) decomposed through
iteration ( 10 )—( 13 ). The estimated parameters of
these distributions are;: u, =54, 0, =9.0, u, =89, 0,
=85 u, =131, 0, =7.2.

250 —— Simulated waveform
N T . <. e Processed result

g

=150

[=9

g

<

0 I . L
0 100 200 300 400

500 Time/ns

Fig.8 A simulated waveform and processed result
by the proposed algorithm

An automated last return detection software provided
by SLICER is applied to the return waveform to identify
the start, peak and end of a return, which is shown in
Fig. 9. The vertical lines Grstart Grpeak and GrEnd ( the
first, second and third line from the left to right) in the
figure illustrate the positions of the ground extracted by
the SLICER. The peak between Grpeak and GrEnd is
inferred to be from the ground. In Fig. 9 the laser pulse
hits the canopy first and creates one echo pulses; a
fraction of the laser pulse also hits the ground giving rise
to a second echo pulses. The two echo pulses overlap as
a result of the distance between vegetation and ground is

short.
250F I GrEnd
F ——=Grpeak
200 ——Grstart
st
Z150F
i
Z100 2
50F
e _ A " o
oL A . . . A
0 100 200 300 400 500 Time/ns

Fig.9 Ground location of SLICER
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Using EM algorithm for decomposing the same data,
two fitted Gaussian distributions can be obtained as
shown in Fig. 10. The two vertical lines show the
positions of two return peaks. Estimated parameters are:
w, =570, =7.3 ., =83, o, =7.3. It is obvious by
comparing Fig. 9 and Fig. 10 that EM decomposition
algorithm outperforms the method provided by SLICER.

250
— Grpeak,

200 Grpeak,

D
(=]

Amplititude

]

200

400 500 Time/ns

0 100 300

Fig. 10  Simulated waveform

Dotted curve shows two Gaussian distribution decomposed

from the same data set shown in Fig.9

Similarly, though the algorithm provided by SILCER
can detect the start, peak and end of the waveform well,
it fails in detecting the first and second return, as shown
in Fig. 11.
(dashed) are decomposed by EM algorithm as shown in

However, three Gausssian components

Fig. 12 EM algorithm performs more accurately.
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Fig. 11  Ground location of SLICER for another data set
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Fig. 12 Simulated waveform by EM algorithm
# Dotted curve shows two Gaussian distributions decomposed

from the same data set shown in Fig. 11

4.2 RIEGL

RIEGL waveform data are stored in two separate files:
# . LWF file contains the calibrated waveform sample data,
#. LGC file contains
information for each laser shot. Each waveform consists of
a byte array of STRTWFLEN ( start waveform length )
samples representing the emitted pulse waveform of a laser
shot for reference, followed by a byte array or ushort array
of WFLEN ( waveform length ) samples representing the
surface return waveform. The distance from one sample to

the next is 0. 149855 m, shown as Fig. 13.
1501

the geocoding and indexing

Amplititude

TT T T T T T T T T

0 L T
100 Time/ns

0 20 40 60 80

Fig. 13 Raw waveform data acquired by RIEGL LM5600

The data preprocessing of RIEGL is different from
that of SLICER. The threshold for denoising in RIEGL
is determined by calculating the mean value of the tail of
the emitted waveform since the emitted waveform is
recorded and provided by the system, again 5% of the
last part of the tail is cut off. There are less samples in
comparison with SLICER. The initial value of o, is set
to 1. Fig. 14 shows the preprocessing of the backscatrrer-
ing waveform, in which the horizontal line represents the
threshold value o, for smoothing.
150

noise

—
(=3
=3

Amplititude
W
=

o‘noiw’c
0 Time/ns
0 20 40 60

Fig. 14 Pre-processed waveform

Fig. 15 shows the two Gaussian components decomposed
from the data shown in Fig. 14. Two vertical lines in the
figure illustrate the location of two return echoes. The
parameters estimated are u, =13.5,0, =1.5,u, =27.0 and

o, =2.5.
150
PR
a100_
E-SO:
<

0k A~ s Time/ns

0 20 40

Fig.15 Simulated waveform by EM algorithm
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5 CONCLUSION

At present, full waveform digitizing technology is not
only adopted by space-borne LIDAR systems, but also
becoming a standard configuration component of airborne
LIDAR systems. Analyzing and processing waveform data
will provide additional surface information than discrete
echoes, though equipment vendors and researchers believe
that the lack of mature algorithm and analyzing workflow is
a bottleneck. Waveform decomposition is one of the key
steps of waveform data analysis. Works in this paper show
that laser scanning waveform decomposition based on
modified EM algorithm provides better waveform fitting
precision compared with conventional methods.
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